1. Amina made this cuboid using centimetre cubes.

Stefan makes a cuboid that is 5 cm longer, 5 cm taller and 5 cm wider than Amina's cuboid. What is the difference between the number of cubes in Amina's and Stefan's cuboids?

2. Cube A and cuboid B have the same volume.

Calculate the missing length on cuboid B.

3. The cube and cuboid have equal volumes.

Not actual size

Calculate the height of the cuboid.

4. Cleo has $\mathbf{2 4}$ centimetre cubes.

She uses all 24 cubes to make a cuboid with dimensions $\mathbf{6 c m}, 2 \mathrm{~cm}$ and $\mathbf{2 c m}$.

Write the dimensions of a different cuboid she can make using all 24 cubes.
\qquad cm, \qquad cm and \qquad cm

Jon has $\mathbf{2 0}$ centimetre cubes.

He wants to make a cube with edges that are $\mathbf{3 c m}$ long.
How many more centimetre cubes does he need?

1 mark
5. The two cuboids have the same volume.

Calculate the length x.
(Not to scale)

6. A cuboid has a square base.

It is twice as tall as it is wide.
Its volume is $\mathbf{2 5 0}$ cubic centimetres.

Not actual size

Calculate the width of the cuboid.

7. Amit has some small cubes.

The edge of each cube is $\mathbf{1 . 5}$ centimetres.

He makes a larger cube out of the small cubes.
The volume of this larger cube is $\mathbf{2 1 6} \mathbf{c m}^{\mathbf{3}}$.
How many small cubes does he use?

2 mark
8. Volume
(a) The diagram shows a cuboid.

Not drawn accurately
What is the volume of this cuboid?
(b) The volume of a different cuboid is half the volume of the cuboid in part (a).

What could the dimensions of this different cuboid be?
\qquad cm by \qquad cm by \qquad cm
9. Salt
(a) What is the volume of this standard size box of salt?

1 mark
(b) What is the volume of this special offer box of salt, which is $\mathbf{2 0 \%}$ bigger?

The standard size box contains enough salt to fill up 10 salt pots

(c) How many salt pots may be filled up from the special offer box of salt?

Mark schemes

1. Award TWO marks for the correct answer of 720

If the answer is incorrect, award ONE mark for evidence of an appropriate method, e.g.

- $3 \times 4 \times 6=72$
$8 \times 9 \times 11=792$
$792-72=$

Award ONE mark for sight of 792
Answer need not be obtained for the award of ONE mark.
Up to 2 m
2. Award TWO marks for the correct answer of 9

If the answer is incorrect, award ONE mark for evidence of an appropriate method, e.g.

- $6 \times 6 \times 6=216$
$216 \div 6=36$
$36 \div 4$
OR
- $216 \div 24$

Answer need not be obtained for the award of ONE mark.
Up to $2 m$
[2]
3. 18
or
1728 seen (the volume of the cube/cuboid)
or
Shows or implies a complete correct method, eg:

- $12 \times 12 \times 12=1440$ (error)
$1440=16 \times 6 \times$ height
height $=1440 \div(16 \times 6)=15$
- $12 \times 12 \times 12 \div 16 \div 6$
! Measures
See guidance
1
[2]

4. (a) Gives three integers other than 2, 2, 6 (in any order) whose product is 24 , eg:

- $1,1,24$
- $1,24,1$
- $1,2,12$
- $1,3,8$
- $1,4,6$
- $2,3,4$
! Non-integer(s) used
As this shows understanding of volume, condone provided the three values given have a product of 24
eg, accept
- $1.5,2,8$
(b) 7

5. 5 cm
or
sight of $300\left(\mathrm{~cm}^{3}\right)$
Or
Complete correct method, e.g.

- $5 \times 6 \times 10 \div 12=25$

$$
\sqrt{25}=\text { wrong answer }
$$

- $50 \div 2=25$
$x \times x=25$
$x=$ wrong answer

6. Award TWO marks for the correct answer of 5 cm

If the answer is incorrect award ONE mark for evidence of an appropriate method, eg
$2 n \times n \times n=250$
so

$$
n \times n \times n=125
$$

The calculation need not be completed for the award of the mark, but $n \times n \times n=125$ OR $n^{3}=125$ must be reached.

Up to 2
7. Award TWO marks for the correct answer of 64

If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg
$216=6 \times 6 \times 6$
$6 \div 1.5=4$
number of cubes $=4 \times 4 \times 4$
OR $1.5 \times 1.5 \times 1.5=3.375$
number of cubes $=216 \div 3.375$
Calculation need not be completed for the award of the mark.
Up to 2
8.
(a) Gives the correct volume, ie 600

Gives the correct units
eg

- cm^{3}
- Cubic centimetres
$!\quad$ The value of 600 is shown to the power 3
eg
- 600^{3}
- $600^{3} \mathrm{~cm}$

Assume the power refers to the units, ie mark as 1, 0
Accept informal but unambiguous language
eg

- Centimetres cubed
- Cube centimetres
- cc

1
(b) Gives three values that multiply to 300
eg

- 3 cm by 10 cm by 10 cm
- $\quad 6 \mathrm{~cm}$ by 5 cm by 10 cm

Accept follow through as three values that multiply to half their volume for part (a)
Accept fractions or decimals
9. (a) Indicates 300

Working need not be shown for the award of this mark.
Ignore use of cubed sign eg

- 300^{3}

Do not accept incorrect attempt to convert to different units eg

- 3
- 30
(b) For $\mathbf{2 m}$ indicates 360 .

For only $\mathbf{1 m}$ shows 60 as 20% of 300 in working or given 60 as volume of the box.

Working need not be shown for the award of any marks.
For 2 m or $\mathbf{1 m}$ allow follow through from part (a), with correct rounding or truncation.

Award only 1m for correct calculation indicated but not evaluated or incorrectly evaluated eg

- $12 \times 6 \times 5=432$
- 1.2×300
- $300 \times 20 \div 100+300$

Do not accept height calculated as 12 with no further attempt to find the volume.
(c) Indicates 12 salt pots.

Working need not be shown for the award of this mark.
Allow follow through from part (a) or (b) with correct rounding or truncation.
Accept any indication eg

- 2 more salt pots drawn on diagram given.

Accept correct description eg

- 2 more salt pots.

Do not accept fractions of a salt pot.
Do not accept fewer than 10 salt pots eg

- 2 salt pots.

