1. Here are five triangles on a square grid.

Four of the triangles have the same area.
Which triangle has a different area?
2. On the grid draw a triangle with the same area as the shaded rectangle.

Use a ruler.

3. Calculate the area of this triangle.

4. The diagram shows a shaded triangle inside a rectangle.

What is the area of the shaded triangle?

5. The diagram shows 4 identical shaded triangles in a rectangle.

The rectangle measures $\mathbf{3 6}$ centimetres by $\mathbf{2 4}$ centimetres.
Calculate the area of one shaded triangle.

6. The diagram shows a shaded triangle inside a larger triangle.

The area of the shaded triangle is $52 \mathrm{~cm}^{2}$.
The area of the shaded triangle is $\frac{\mathbf{4}}{\mathbf{9}}$ of the area of the larger triangle.

Calculate the area of the larger triangle.

7. This is a centimetre grid.

On the grid draw a triangle which has an area of $7.5 \mathrm{~cm}^{2}$ and which has an obtuse angle.
Use a ruler.

8. The diagram shows a right-angled triangle inside a circle.

The circle has a radius of 5 centimetres.

Calculate the area of the triangle.

Calculate the area of the shaded part of the diagram.

2 mark

1. A

Accept alternative unambiguous positive indications of the correct triangle, e.g. $2 \frac{1}{2}$ or 2.5 .
2. Any triangle with an area of $8 \mathrm{~cm}^{2}$, eg

Drawings must be accurate to within 2 mm of appropriate grid intersections.

The triangle need not be shaded and need not have vertices at grid junctions.
Do not penalise drawings done without a ruler, provided the intention is clear.

OR

Accept drawings that overlap the given rectangle or use the edge of the grid, eg

3. $54 \mathrm{~cm}^{2}$
$4 . \quad 12$
or
Shows or implies a complete correct method, eg:

- $4 \times 6 \div 2=13$ (error)
- $60-(10 \times 6 \div 2)-(6 \times 6 \div 2)$
- 60-48

5. Award TWO marks for the correct answer of $108 \mathrm{~cm}^{2}$

If the answer is incorrect award ONE mark for evidence of an appropriate method, eg
$36 \div 2=18$
$24 \div 2=12$
area $=1 / 2 \times 12 \times 18$
Calculation need not be completed for the award of the mark.
No mark is awarded for the result of calculating 12×18 only.
6. Award TWO marks for the correct answer of 117.

If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg
$52 \div 4=13$ AND 9×13
OR ${ }^{\frac{4}{9}}=0.444$ AND $52 \div 0.444$
Calculation need not be completed for the award of the mark.
Up to 2
[2]
7. Award TWO marks for any obtuse-angled triangle with an area of $7.5 \mathrm{~cm}^{2}$, eg

If the answer is incorrect, award ONE mark for any triangle with an area of $7.5 \mathrm{~cm}^{2}$ (irrespective of angles)

Accept any obtuse-angled triangle with appropriate base and height each correct to within 2 mm
The triangle need not have vertices on the grid intersections.
Accept a triangle not drawn with a ruler, provided the vertices are correctly placed.

Up to 2
8. (a) 12.5 OR $12 \frac{1}{2}$

1
(b) Award TWO marks for the correct answer in the range of 66 to 66.1
inclusive OR an answer based upon values obtained in 13a.
If the answer is incorrect award ONE mark for evidence of an appropriate method, eg

- $(3.14 \times 5 \times 5)-12.5$

The calculation need not be completed for the award of the mark.

