Q1.
Karen makes a fraction using two number cards.

She says,

'My fraction is equivalent to $\frac{1}{2}$

One of the number cards is $\mathbf{6}^{\prime}$
What could Karen's fraction be?
Give both possible answers.

Q2.
Complete these fractions to make each equivalent to $\begin{array}{lll}\frac{3}{5} & \frac{\square}{10} & \frac{\square}{15}\end{array}$
\square

Q3.
Join pairs of equivalent fractions.
One is done for you.

Q5. $\frac{6}{5} \quad \frac{3}{5} \quad \frac{3}{4}$
Write these fractions in order, starting with the smallest.

smallest

Q6.
Is $\frac{4}{9}$ greater than $\frac{1}{3}$?

Circle Yes or No.

Is $\frac{4}{9}$ half of $\frac{8}{18}$?

Q7.
Circle the fraction that is greater than $\frac{1}{2}$ but less than $\frac{3}{4}$
$\frac{7}{8}$
$\frac{2}{5}$
$\frac{1}{3}$
$\frac{5}{8}$
$\frac{3}{6}$

Q8.
Two of the fractions below are equivalent.
Circle them. $\begin{array}{lllll}\frac{2}{3} & \frac{6}{10} & \frac{9}{12} & \frac{10}{15} & \frac{16}{20}\end{array}$

Q9.
$\frac{1}{3}$
of this square is shaded.

The same square is used in the diagrams below.
What fraction of this diagram is shaded?

What fraction of this diagram is shaded?

1 mark

Q1.
Award TWO marks for both fractions correct as shown:

If the answer is incorrect, award ONE mark for one fraction correct.
Accept fractions written in either order.
Up to 2

Q2.
Fractions completed as shown below:

All three fractions must be correct for the award of the mark.

Q3.
Award TWO marks for three correct pairs joined, as shown.

Award ONE mark for any two correct pairs joined.

Q4.
$\frac{25}{30}$

Q5.
Fractions written in the correct order, as shown:
$\begin{array}{lll}\frac{3}{5} & \frac{3}{4} & \frac{6}{5}\end{array}$
Accept the fraction joined to the correct box, rather than written in it.
Do not accept transcription errors or misreads for this question.

Q6.
(a) Indicates Yes and gives a correct explanation, eg:

- $\frac{1}{3}=\frac{3}{9}, \frac{3}{9}<\frac{4}{9}$

- $\frac{1}{3}$ of 9 is 3 not 4
- $\frac{4}{9}$ should be $\frac{1.333 \ldots}{3}$, not $\frac{1}{3}$
- $0.33 \ldots<0.44 \ldots$
- $\frac{1}{3}=\frac{4}{12}, \frac{4}{12}<\frac{4}{9}$
- $\frac{1}{3}$ of $27=9$ and $\frac{4}{9}$ of $27=12$

Accept minimally acceptable explanation, eg:

- $\frac{3}{9}$
- $\frac{9}{27}, \frac{12}{27}$
- 4 is over a third of 9
- $\frac{1}{3}$ of 9 is 3
- $\frac{4}{9}$ is closer to a half than a third
- $\quad 0.33,0.44$
- It is one ninth bigger
- If you divide $\frac{4}{9}$ by a $\frac{1}{3}$ you get $\frac{4}{3}$
- $\frac{4}{12}$
! Inaccuracies in diagrams
Throughout the question, condone provided the pupil's intention to divide into thirds, ninths and/or eighteenths is clearly shown, and the correct sections are shaded
! Indicates No, or no decision made, but explanation clearly correct Condone provided the explanation is more than minimal
Do not accept incomplete or incorrect explanation, eg:
- If you draw a pie chart for $\frac{4}{9}$, more than $\frac{1}{3}$ is shaded
- Put them into 27ths and $\frac{4}{27}>\frac{1}{27}$
- $\frac{1}{3} \times 3=\frac{3}{9}$
(b) Indicates No and gives a correct explanation, eg:
- The fractions are equal; if you multiply the numerator and denominator by the same number the fractions are equivalent
- $\frac{4}{9}=\frac{8}{18}$
- $\frac{4}{9} \times 2=\frac{8}{9}$ not $\frac{8}{18}$
- $\frac{8}{18} \div 2=\frac{4}{18}$ which is $\frac{2}{9}$ not $\frac{4}{9}$
- To double the fraction, you don't double the numerator and the denominator, you just double the numerator
- To halve the fraction, you don't halve the denominator, only the numerator

Accept minimally acceptable explanation, eg:

- Equal
- Equivalent
- Same
- $\frac{4}{9}$ is half of $\frac{8}{9}$
- $\frac{4}{18}$ is half of $\frac{8}{18}$
- You only double the top number
- You only halve the top number
! Indicates Yes, or no decision made, but explanation clearly correct
Condone provided the explanation is more than minimal
Do not accept Incomplete explanation, eg
- If you double the top and the bottom number of
- $\frac{4}{18}$ is half of $\frac{8}{18}$ you get $\quad \frac{4}{9}$ is half of $\frac{8}{9}$

Q7.
Fraction circled as shown:
$\frac{7}{8} \quad \frac{2}{5}$

Q8.
Two fractions circled as shown:

Do not award the mark if additional incorrect fractions are circled.
Accept alternative unambiguous indications, eg fractions ticked, crossed or underlined.

Q9.
(a) $\frac{1}{3}$

Accept equivalent fractions or decimals.
(b) $\frac{1}{9}$

Accept equivalent fractions or decimals.

