Q1.
Write the two missing values to make these equivalent fractions correct.

Q2. $\frac{6}{5} \quad \frac{3}{5} \quad \frac{3}{4}$
Write these fractions in order, starting with the smallest.

Q3.
Is $\frac{4}{9}$ greater than $\frac{1}{3}$?

Circle Yes or No.

Yes / No

Show how you know.

Is $\frac{4}{9}$ half of $\frac{8}{18}$?

Cirle Yes or No.

Yes / No
Show how you know.

Q4.
Circle the fraction that is greater than $\frac{1}{2}$ but less than $\frac{3}{4}$
$\frac{7}{8}$
$\frac{2}{5}$
$\frac{1}{3}$
$\frac{5}{8}$
$\frac{3}{6}$

Q5.
Two of the fractions below are equivalent.
Circle them.
$\begin{array}{lllll}\frac{2}{3} & \frac{6}{10} & \frac{9}{12} & \frac{10}{15} & \frac{16}{20}\end{array}$

Q6.
$\frac{1}{3}$ of this square is shaded.

The same square is used in the diagrams below.
What fraction of this diagram is shaded?

What fraction of this diagram is shaded?

Q7.
n and p stand for two numbers.
n is a multiple of 5
p is a multiple of 6
$\frac{n}{p}=\frac{2}{3}$

Find numbers that n and p stand for.

Q8.
Anna says $\frac{4}{7}$ is greater than $\frac{5}{9}$
Explain why Anna is correct.

Mark schemes

Q1.
$\frac{25}{30}$

30
36

Q2.
Fractions written in the correct order, as shown:
$\begin{array}{lll}\frac{3}{5} & \frac{3}{4} & \frac{6}{5}\end{array}$
Accept the fraction joined to the correct box, rather than written in it. Do not accept transcription errors or misreads for this question.

Q3.
(a) Indicates Yes and gives a correct explanation, eg:

- $\frac{1}{3}=\frac{3}{9}, \frac{3}{9}<\frac{4}{9}$
-

- $\frac{1}{3}$ of 9 is 3 not 4
- $\frac{4}{9}$ should be $\frac{1.333 \ldots}{3}$, not $\frac{1}{3}$
- $0.33 \ldots<0.44 \ldots$
- $\frac{1}{3}=\frac{4}{12}, \frac{4}{12}<\frac{4}{9}$
- $\frac{1}{3}$ of $27=9$ and $\frac{4}{9}$ of $27=12$

Accept minimally acceptable explanation, eg:

- $\frac{3}{9}$
- $\frac{9}{27}, \frac{12}{27}$
- 4 is over a third of 9
- $\frac{1}{3}$ of 9 is 3
- $\frac{4}{9}$ is closer to a half than a third
- $0.33,0.44$
- It is one ninth bigger
- If you divide $\frac{4}{9}$ by a $\frac{1}{3}$ you get $\frac{4}{3}$
- $\frac{4}{12}$
! Inaccuracies in diagrams
Throughout the question, condone provided the pupil's intention to divide into thirds, ninths and/or eighteenths is clearly shown, and the correct sections are shaded
! Indicates No, or no decision made, but explanation clearly correct
Condone provided the explanation is more than minimal
Do not accept incomplete or incorrect explanation, eg:
- If you draw a pie chart for $\frac{4}{9}$, more than $\frac{1}{3}$ is shaded
- Put them into 27ths and $\frac{4}{27}>\frac{1}{27}$
- $\frac{1}{3} \times 3=\frac{3}{9}$
(b) Indicates No and gives a correct explanation, eg:
- The fractions are equal; if you multiply the numerator and denominator by the same number the fractions are equivalent
- $\frac{4}{9}=\frac{8}{18}$
- $\frac{4}{9} \times 2=\frac{8}{9}$ not $\frac{8}{18}$
- $\frac{8}{18} \div 2=\frac{4}{18}$ which is $\frac{2}{9}$ not $\frac{4}{9}$
- To double the fraction, you don't double the numerator and the denominator, you just double the numerator
- To halve the fraction, you don't halve the denominator, only the numerator

Accept minimally acceptable explanation, eg:

- Equal
- Equivalent
- Same
- $\frac{4}{9}$ is half of $\frac{8}{9}$
- $\frac{4}{18}$ is half of $\frac{8}{18}$
- You only double the top number
- You only halve the top number
! Indicates Yes, or no decision made, but explanation clearly correct
Condone provided the explanation is more than minimal
Do not accept Incomplete explanation, eg
- If you double the top and the bottom number of $\frac{4}{18}$ is half of $\frac{8}{18}$
you get $\quad \frac{4}{9}$ is half of $\frac{8}{9}$

Q4.
Fraction circled as shown:
$\frac{7}{8} \quad \frac{2}{5} \quad \frac{1}{3} \quad \frac{5}{8} \quad \frac{3}{6}$
Accept alternative unambiguous indications, eg fraction ticked, crossed or underlined.

Q5.
Two fractions circled as shown:

Do not award the mark if additional incorrect fractions are circled.
Accept alternative unambiguous indications, eg fractions ticked, crossed or underlined.

Q6.
(a) $\frac{1}{3}$

Accept equivalent fractions or decimals.
(b) $\frac{1}{9}$

Accept equivalent fractions or decimals.

Q7.
Award marks as shown below for values of n and p which meet the following criteria:

	$n: p$	
	$2: 3$	$3: 2$
n is multiple of 5 and \boldsymbol{p} is multiple of 6	2 marks $[\mathrm{A}]$	1 mark $[\mathrm{C}]$
\boldsymbol{n} is multiple of 5 or \boldsymbol{p} is multiple of $\mathbf{6}$	1 mark $[\mathrm{B}]$	0 marks

The following examples are worth 2 marks:

- $n=20$ and $p=30[\mathrm{~A}]$
- $n=80$ and $p=120$ [A]
! For $2 m$ or 1m, accept multiple answers provided all meet the requirements for the mark(s) and are clearly distinguishable as separate answers, eg for 2 marks
- $n=20,40,60$
$p=30,60,90$
or
The following examples are worth 1 mark
- $\quad n=5$ and $p=7.5[B]$
- $n=10$ and $p=15[B]$
- $n=4$ and $p=6[\mathrm{~B}]$
- $n=90$ and $p=60$ [C]

OR
Shows or implies a method for rearranging $\frac{n}{p}=\frac{2}{3}$ which moves p from the denominator, eg:

- $3 n=2 p$
- $n=\frac{2 p}{3}$

OR

Shows or implies a complete correct method, eg:

- $2 \times 5 \times 6: 3 \times 5 \times 6$
! For 1m, condone a list of at least five additional ratios or fractions equivalent $\frac{2}{3}$ with none incorrect

Q8.
Gives a correct explanation that converts the given fractions to decimals or fractions with a common denominator / numerator or percentages, eg:

- $\frac{4}{7}=\frac{36}{63}$ but $\frac{5}{9}=\frac{35}{63}$
- $0.57142 \ldots>0.55555$
- Because there is a $\frac{1}{63}$ difference between the two

For ${ }^{\frac{4}{7}}$ accept:

- 0.57(...) or 57(....\%)

For ${ }^{\frac{5}{9}}$ accept:

- 0.56 or $0.55(\ldots)$ or $56(\%)$ or $55(\ldots . \%)$

Accept minimally acceptable explanations, eg:
. $\frac{36}{63} \frac{35}{63}$

- 0.560 .57

Do not accept incomplete explanations that fail to convert both fractions to a common format, eg:
. $\frac{4}{7}$ is 0.57 so it is bigger

- 9ths are smaller than 7ths and there is only one more 9th
than 7th so $\frac{4}{7}$ is greater
! Condone method of conversion incorrectly expressed in an otherwise correct explanation, eg:
. $\frac{4}{7}_{\times 9}=\frac{36}{63}$

