Q1.

Write the two missing values to make these equivalent fractions correct.

Q4.

			1		3
Circle the fra	action that	is greater	than 2 bu	ut less thai	4
7	2	1	5	3	
8	5	3	8	6	

Q5.

Two of the fractions below are equivalent.

Circle them.

2	6	9	10	16
3	10	12	15	20

Q6.

 $\frac{1}{3}$ of this square is shaded.

 $\frac{1}{3}$

The same square is used in the diagrams below.

What fraction of this diagram is shaded?

What fraction of this diagram is shaded?

1 mark

1 mark

1 mark

1 mark

Q7.

n and p stand for two numbers.

n is a multiple of 5 p is a multiple of 6

$$\frac{n}{p} = \frac{2}{3}$$

Find numbers that n and p stand for.

2 marks

Q8.

Explain why Anna is correct.

1 mark

Mark schemes

30
30

0.5

[2]

[1]

1

1

Q2.

Fractions written in the correct order, as shown:

- $\frac{3}{4}$ 6 5 3 5

•

Accept the fraction joined to the correct box, rather than written in it. Do not accept transcription errors or misreads for this question.

Q3.

(a) Indicates Yes and gives a correct explanation, eg:

	1	3	3	4
•	3	9'	9	< 9

- $\frac{1}{3}$ of 9 is 3 not 4 •
- $\frac{4}{9}$ should be $\frac{1.333...}{3}$, not $\frac{1}{3}$ ٠
- 0.33... < 0.44...

•
$$\frac{1}{3} = \frac{4}{12}, \frac{4}{12} < \frac{4}{9}$$

•
$$\frac{1}{3}$$
 of 27 = 9 and $\frac{4}{9}$ of 27 = 12

Accept minimally acceptable explanation, eg:

$$\frac{3}{9}$$

 $\frac{9}{27}, \frac{12}{27}$

4 is over a third of 9 •

•
$$\frac{1}{3}$$
 of 9 is 3
• $\frac{4}{9}$ is closer to a half than a third
• 0.33, 0.44
• It is one ninth bigger

If you divide
$$\frac{4}{9}$$
 by a $\frac{1}{3}$ you get $\frac{4}{3}$

12 ! Inaccuracies in diagrams

Throughout the question, condone provided the pupil's intention to divide into thirds, ninths and/or eighteenths is clearly shown, and the correct sections are shaded

! Indicates **No**, or no decision made, but explanation clearly correct Condone provided the explanation is more than minimal

Do not accept incomplete or incorrect explanation, eg:

- If you draw a pie chart for $\frac{4}{9}$, more than $\frac{1}{3}$ is shaded
- Put them into 27ths and $\frac{4}{27} > \frac{1}{27}$
- $\frac{1}{3} \times 3 = \frac{3}{9}$

1 U1

(b) Indicates **No** and gives a correct explanation, eg:

- The fractions are equal; if you multiply the numerator and denominator by the same number the fractions are equivalent
- $\cdot \quad \frac{4}{9} = \frac{8}{18}$
- $\frac{4}{9} \times 2 = \frac{8}{9} \text{ not } \frac{8}{18}$
- $\frac{8}{18} \div 2 = \frac{4}{18}$ which is $\frac{2}{9}$ not $\frac{4}{9}$
- To double the fraction, you don't double the numerator and the denominator, you just double the numerator
- To halve the fraction, you don't halve the denominator, only the numerator Accept minimally acceptable explanation, eg:
 - Equal
 - Equivalent
 - Same
 - $\frac{4}{9}$ is half of $\frac{8}{9}$
 - $\frac{4}{18}$ is half of $\frac{8}{18}$
 - You only double the top number

U1

[2]

Q7.

Award marks as shown below for values of n and p which meet the following criteria:

	n:p		
	2:3	3:2	
<i>n</i> is multiple of 5 and <i>p</i> is multiple of 6	2 marks [A]	1 mark [C]	
<i>n</i> is multiple of 5 or <i>p</i> is multiple of 6	1 mark [B]	0 marks	

The following examples are worth 2 marks:

- *n* = 20 and *p* = 30 [A]
- *n* = 80 and *p* = 120 [A]

! For 2m or 1m, accept multiple answers provided all meet the requirements for the mark(s) and are clearly distinguishable as separate answers, eg for 2 marks

- *n* = 20, 40, 60
- $p = 30, \, 60, \, 90$

or

The following examples are worth 1 mark:

- n = 5 and p = 7.5 [B]
- n = 10 and p = 15 [B]
- n = 4 and p = 6 [B]
- *n* = 90 and *p* = 60 [C]

OR

$$\frac{n}{p} = \frac{2}{3}$$

Shows or implies a method for rearranging p which moves p from the denominator, eg:

• 3*n* = 2*p*

$$n = \frac{2p}{3}$$

OR

Shows or implies a complete correct method, eg:

• 2×5×6 : 3×5×6

? For 1*m*, condone a list of at least five additional ratios or fractions equivalent $\frac{2}{3}$ with none incorrect

[2]

1

2

Q8.

•

Gives a correct explanation that converts the given fractions to decimals **or** fractions with a common denominator / numerator **or** percentages, eg:

- $\frac{4}{7} = \frac{36}{63} \frac{5}{\text{but}} = \frac{35}{63}$
- 0.57142... > 0.55555

• Because there is a
$$\frac{1}{63}$$
 difference between the two

For $\frac{4}{7}$ accept: • 0.57(...) or 57(....%) For $\frac{5}{9}$ accept: • 0.56 or 0.55(...) or 56(%) or 55(....%) Accept minimally acceptable explanations, eg: 36 35

- <u>63</u> <u>63</u>
- 0.56 0.57

Do not accept incomplete explanations that fail to convert both fractions to a common format, eg:

- $\frac{4}{7}$.
- $\overline{7}$ is 0.57 so it is bigger
- 9ths are smaller than 7ths and there is only one more 9th

than 7th so 7 is greater

! Condone method of conversion incorrectly expressed in an otherwise correct explanation, eg:

$$\frac{4}{7}$$
 $\frac{36}{63}$

• 7	×9= (63
-----	-------	----